
Eduardo Rodrigues, Henry Schreiner
University of Cincinnati , Princeton University

Particles and decays
in the Scikit-HEP project

LHCb Week, 18th June 2019

PDG particle data
and identification codes

Parse decay files, describe and
convert particle decays between

digital representations

https://github.com/scikit-hep/particle
https://github.com/scikit-hep/decaylanguage

LHCb Week, CERN, 18th June 2019 2/22Eduardo Rodrigues

The grand picture – the Scikit-HEP project

InteroperabilityReproducibility
Collaboration

❑ Create an ecosystem for particle physics data analysis in Python

❑ Initiative to improve the interoperability between HEP tools

and the scientific ecosystem in Python

- Expand the typical toolkitset for particle physicists

- Set common APIs and definitions to ease “cross-talk”

❑ Initiative to build a community of developers and users

- Community-driven and community-oriented project

❑ Effort to improve discoverability of relevant tools

Sustainability

http://scikit-hep.org/

LHCb Week, CERN, 18th June 2019 3/22Eduardo Rodrigues

Who uses (some of) Scikit-HEP ?

PDG particle data

and identification codes

https://github.com/scikit-hep/particle

LHCb Week, CERN, 18th June 2019 5/22Eduardo Rodrigues

Particle package – motivation

❑ The Particle Data Group (PDG) provides a downloadable table of particle masses, widths, charges

and Monte Carlo particle ID numbers (PDG IDs)

- Most recent file here

❑ It also provided an experimental file with extended information (spin, quark content, P and C parities, etc.)

until 2008 only, see here (not widely known!)

❑ But anyone wanting to use these data, the only readily available, has to parse the file programmatically

❑ Why not make a Python package to deal with all these data, for everyone?

❑ The C++ HepPID and HepPDT libraries provide functions for processing particle ID codes

in the standard particle (aka PDG) numbering scheme

❑ Different event generators have their separate set of particle IDs: Pythia, EvtGen, etc.

❑ Again, why not make a package providing all functionality/conversions, Python-ically, for everyone?

http://pdg.lbl.gov/
http://pdg.lbl.gov/2019/html/computer_read.html
http://pdg.lbl.gov/2008/html/computer_read.html
http://pdg.lbl.gov/

LHCb Week, CERN, 18th June 2019 6/22Eduardo Rodrigues

Particle package – overview

❑ Pythonic interface to

PDG particle data table

and

particle identification codes

❑ With extra goodies

❑ 2 separate submodules

❑ Comprehensive documentation (docstrings)

❑ Continuous Integration (CI): extensive tests for excellent test coverage

- In packages such as these, tests should target both the code itself but also the physics it deals with!

❑ We use Azure DevOps

- Seamlessly test on Linux, macOS and Windows

https://azure.microsoft.com/en-us/services/devops/

LHCb Week, CERN, 18th June 2019 7/22Eduardo Rodrigues

Particle package – PDG IDs module overview

❑ Process and query PDG IDs, and more – no look-up table needed

- Current version of package reflects the latest version of the HepPID & HepPDT utility functions defined in

the C++ HepPID and HepPDT versions 3.04.01

- It contains more functionality than that available in the C++ code … and minor fixes too

❑ Definition of a PDGID class, PDG ID literals,

and set of standalone HepPID functions to query PDG IDs

(is_meson, has_bottom, j_spin, charge, etc.)

- All PDGID class functions are available standalone

❑ PDG ID queries also available on the command line

❑ PDGID class

- Wrapper class for PDG IDs

- Behaves like an int, with extra goodies

- Large spectrum of properties and methods,

i.e. the functions defined in the HepPID and HepPDT

C++ libraries, with a Pythonic interface, and yet more

- To print them all:

http://lcgapp.cern.ch/project/simu/HepPDT/

LHCb Week, CERN, 18th June 2019 8/22Eduardo Rodrigues

Particle package – particle module overview

❑ Simple and natural API to deal with the PDG particle data table, with powerful look-up and search utilities

❑ Definition of a Particle class and particle name literals

- Typical queries should be, and are, 1-liners

❑ Advanced usage: ability to specify or build a particle data table, conversion tools

❑ Particle / PDG ID searches available on the command line too

LHCb Week, CERN, 18th June 2019 9/22Eduardo Rodrigues

Particle package – data files

❑ All data files stored under particle/data/

❑ PDG particle data files

- Original PDG data files, which are in a fixed-width format

- Code uses “digested forms” of the PDG files, stored as CSV, for optimised querying

- Latest PDG data used by default (2019 at present)

- Advanced usage: user can load older PDG table, load a “user table” with new particles, append to default table

❑ Other data files

- CSV file for mapping of PDG IDs to particle LaTeX names

…

…

LHCb Week, CERN, 18th June 2019 10/22Eduardo Rodrigues

Particle package – particle look-up

❑ Particle class

- Standard look-up via from_pdgid(…)

- Various other from_X(…)

methods exist

❑ - Large spectrum of

properties and methods:

- Get particle properties

- Deal with underlying particle table

- Powerful search engine …

❑ Particle literals

- Easily recognizable names for manipulations,

e.g. in plots

LHCb Week, CERN, 18th June 2019 11/22Eduardo Rodrigues

Particle package – powerful particle search

❑ Particle.find(…) – search a single match (exception raised if multiple particles match the search specifications)

❑ Particle.findall(…) – search a list of candidates

❑ Powerful search methods

that can query any particle property!

❑ One-line queries

❑ E.g., trivially find all pseudoscalar charm mesons:

LHCb Week, CERN, 18th June 2019 12/22Eduardo Rodrigues

Particle package – future directions & developments

❑ Addition of particle IDs and names relevant to other MC programs

- (Yes, not consistent across programs!)

- Useful IDs such as those used in PYTHIA, Geant and EvtGen

❑ Bring in other communities where Particle is / can be relevant

- Ongoing discussions with astroparticle physics community

- Particle IDs used in EPOS, CORSIKA, DpmJet, QGSJet, Sybill, UrQMD, …

❑ Ongoing discussions with PDG group

- Provide the right tool

- Can we provide more?

- Stay tuned …

Parse decay files, describe and

convert particle decays

between digital representations

https://github.com/scikit-hep/decaylanguage

LHCb Week, CERN, 18th June 2019 14/22Eduardo Rodrigues

DecayLanguage package – motivation and overview

Motivation

❑ Ability to describe decay-tree-like structures

❑ Provide a translation of decay amplitude models from AmpGen to GooFit

- Idea is to generalise this to other decay descriptions

❑ Any experiment uses event generators which, among many things, need to describe particle decay chains

❑ Programs such as EvtGen rely on so-called .dec decay files

❑ Many experiments need decay data files

❑ Why not make a Python package to deal with decay files, for everyone?

Overview

❑ Tools to parse decay files and programmatically manipulate them, query, display information

- Descriptions and parsing built atop the Lark parser

❑ Tools to translate decay amplitude models from AmpGen to GooFit, and manipulate them

Library and set of applications for fitting and generating
multi-body particle decays using the isobar model

https://github.com/GooFit/AmpGen
https://github.com/GooFit/GooFit

LHCb Week, CERN, 18th June 2019 15/22Eduardo Rodrigues

DecayLanguage package – decay files

“Master file” DECAY.DEC

❑ Gigantic file defining decay modes for all relevant particles,

including decay model specifications

❑ LHCb example:

~ 450 particle decays, thousands of decay modes,

over 11k lines in total

User .dec files

❑ Needed to produce specific MC samples

❑ Typically contain a single decay chain

(except if defining inclusive samples)

Define dm 0.507e12

...

Alias B0sig B0

Alias anti-B0sig anti-B0

ChargeConj B0sig anti-B0sig

...

Decay pi0

0.988228297 gamma gamma PHSP;

0.011738247 e+ e- gamma PI0_DALITZ;

0.000033392 e+ e+ e- e- PHSP;

0.000000065 e+ e- PHSP;

Enddecay

...

CDecay tau+

...

Decay file for [B_c+ -> (B_s0 -> K+ K-) pi+]cc

Alias B_c+sig B_c+

Alias B_c-sig B_c-

ChargeConj B_c+sig B_c-sig

Alias MyB_s0 B_s0

Alias Myanti-B_s0 anti-B_s0

ChargeConj MyB_s0 Myanti-B_s0

Decay B_c+sig

1.000 MyB_s0 pi+ PHOTOS PHSP;

Enddecay

CDecay B_c-sig

Decay MyB_s0

1.000 K+ K- SSD_CP 20.e12 0.1 1.0 0.04 9.6 -0.8 8.4 -0.6;

Enddecay

CDecay Myanti-B_s0

LHCb Week, CERN, 18th June 2019 16/22Eduardo Rodrigues

DecayLanguage package – decay file parsing and display

❑ Parsing should be simple

- Expert users can configure parser choice and settings, etc.

❑ Parsing should be (reasonably) fast

- Example of LHCb’s master DECAY.DEC file:

Over 11k lines in total, ~ 450 particle decays, ~60 charge-conjugate decays created on-the-fly (‘CDecay’ statements),

thousands of decay modes

❑ After parsing, many queries are possible

❑ One can also visualise decay chains … ☺

LHCb Week, CERN, 18th June 2019 17/22Eduardo Rodrigues

Decay chain – simplest view with no sub-decays shown

Decay D*+

0.6770 D0 pi+ VSS;

0.3070 D+ pi0 VSS;

0.0160 D+ gamma VSP_PWAVE;

Enddecay

Decay D*-

0.6770 anti-D0 pi- VSS;

0.3070 D- pi0 VSS;

0.0160 D- gamma VSP_PWAVE;

Enddecay

Decay D0

1.0 K- pi+ PHSP;

Enddecay

Decay D+

1.0 K- pi+ pi+ pi0 PHSP;

Enddecay

Decay pi0

0.988228297 gamma gamma PHSP;

0.011738247 e+ e- gamma PI0_DALITZ;

0.000033392 e+ e+ e- e- PHSP;

0.000000065 e+ e- PHSP;

Enddecay

(Considered by itself, this file in in fact incomplete,

as there are no instructions on how to decay the anti-D0 and the D-.

Good enough for illustration purposes, though.)

LHCb Week, CERN, 18th June 2019 18/22Eduardo Rodrigues

Decay chain – p0 decays displayed

LHCb Week, CERN, 18th June 2019 19/22Eduardo Rodrigues

Decay chain – full view

LHCb Week, CERN, 18th June 2019 20/22Eduardo Rodrigues

DecayLanguage package – conversion of decay models / representations

❑ Decay chains

- A universal modelling of decay chains would profit many use cases,

e.g. description of components for amplitude analyses

❑ Present code understands AmpGen syntax and can generate code for the GooFit fitter

❑ Note:

makes use of the Particle package

LHCb Week, CERN, 18th June 2019 21/22Eduardo Rodrigues

DecayLanguage package – future directions & developments

Decay files

❑ Streamline and enhance the .dec parser

- Ex.: syntax such as

p.find_decay_chains(final_state=[‘K+’, ‘K-’, ‘pi+’, ‘pi-’], extra_particles=[‘pi0’])

could be a neat/trivial way to query the master DECAY.DEC and

“find all decay chains leading to either ‘K+ K- pi+ pi-’ or ‘K+ K- pi+ pi- pi0’”

❑ Provide a universal description and visualisation of decay trees (a lot done on this in the last week …)

- We already have customers interested, e.g. visualisation of decays in pyhepmc

Decay models / representations

❑ Implement more backend formats: GooFit in Python, etc.

❑ Longer term – implement decay logic inside model descriptions

- Provide a reference for other packages

https://github.com/scikit-hep/pyhepmc

LHCb Week, CERN, 18th June 2019 22/22Eduardo Rodrigues

Interested ? Want to try it ?

Particle

❑ GitHub: https://github.com/scikit-hep/particle/

❑ Releases: PyPI

❑ Kindly recognise software work – cite us:

DecayLanguage

❑ GitHub: https://github.com/scikit-hep/decaylanguage

❑ Releases: PyPI

Scikit-HEP project

❑ GitHub: https://github.com/scikit-hep/

❑ Website: http://scikit-hep.org/

❑ Get in touch: http://scikit-hep.org/get-in-touch.html

See interactive demos:

- Particle

- DecayLanguage

https://github.com/scikit-hep/particle/
https://pypi.org/project/Particle/
https://github.com/scikit-hep/decaylanguage
https://pypi.org/project/decaylanguage/
https://github.com/scikit-hep/
http://scikit-hep.org/
http://scikit-hep.org/get-in-touch.html
https://doi.org/10.5281/zenodo.2552429
https://pypi.org/project/decaylanguage/
https://mybinder.org/badge_logo.svg)%5d(https:/mybinder.org/v2/gh/scikit-hep/decaylanguage/master?urlpath=lab/tree/notebooks/DecayLanguageDemo.ipynb
https://mybinder.org/v2/gh/scikit-hep/particle/master?urlpath=lab/tree/notebooks/ParticleDemo.ipynb
https://pypi.org/project/Particle/

Back-up

LHCb Week, CERN, 18th June 2019 24/22Eduardo Rodrigues

❑ PDGID literals

- Provide (PDGID class) aliases

for the most common particles,

with easily recognisable names

❑ All is consistent. Ex.:

Particle package – PDG identification code literals

❑ Literals: handy way to manipulate things with human-readable names

LHCb Week, CERN, 18th June 2019 25/22Eduardo Rodrigues

DecayLanguage package – Lark parser grammar for decay files

start : _NEWLINE? (line _NEWLINE)+ ("End" _NEWLINE)?

?line : define | pythia_def | alias | chargeconj | commands | decay | cdecay | setlspw

pythia_def : "PythiaBothParam" LABEL ":" LABEL "=" (LABEL | SIGNED_NUMBER)

setlspw : "SetLineshapePW" label label label value

cdecay : "CDecay" label

define : "Define" label value

alias : "Alias" label label

chargeconj : "ChargeConj" label label

?commands : global_photos

global_photos : boolean_photos

boolean_photos : "yesPhotos" -> yes

| "noPhotos" -> no

decay : "Decay" particle _NEWLINE decayline+ "Enddecay"

decayline : value particle* photos? model _NEWLINE // There is always a ; here

value : SIGNED_NUMBER

photos : "PHOTOS"

label : LABEL

particle : LABEL // Add full particle parsing here

model : MODEL_NAME model_options?

model_options : (value | LABEL)+

%import common.WS_INLINE

%import common.SIGNED_NUMBER

// New lines filter our comments too, and multiple new lines

_NEWLINE: (/\r?\n[\t]*/ | COMMENT)+

MODEL_NAME.2 : "BaryonPCR"|"BTO3PI_CP"|"BTOSLLALI"|"BTOSLLBALL"|"BTOXSGAMMA"|"BTOXSLL"| ...

LABEL : /[a-zA-Z0-9\/\-+*_()']+/

COMMENT : /[;#][^\n]*/

// We should ignore comments

%ignore COMMENT

// Disregard spaces in text

%ignore WS_INLINE

❑ Decay file parser

grammar:

decfile.lark !

❑ This file is enough

to parse and

understand

decay files

