PYTHON IN HIGH-ENERGY
PHYSICS

Hans Dembinski, MPIK Heidelberg
21 Mar 2019

ABOUT ME

Cosmic ray/HEP physicist now in LHCb
Trying to solve the Muon Puzzle in air showers
Active in the Boost C++ and Scikit-HEP Python communities
My OSS projects
= Boost::Histogram
= pyhepmc
= iminuit (maintainer)

https://arxiv.org/abs/1902.08124
https://github.com/boostorg/histogram
https://github.com/scikit-hep/pyhepmc
https://github.com/scikit-hep/iminuit

TAKE-HOME MESSAGE

e HEP software is still dominantly C++ (ROOT)...

= ... but half the analyses in LHCb already in Python (survey 2018)
= Next major release ROOT 7 will resolve fundamental design issues

e OSSinitiatives in Python and C++ offer alternatives to ROOT
s Scikit-HEP Project: uproot, iminuit, ...
= Boost::Histogram with Python frontend

e Bright future for Python in HEP
= Python can easily bind to C++ libraries with pybind11
= Python itself can be made fast with Numba
= Growth of Python ecosphere outperforms growth of C++ ecosphere

https://indico.cern.ch/event/697389/contributions/3114285/
https://github.com/scikit-hep/
https://github.com/boostorg/histogram

HIGH-ENERGY PHYSICS

Big Data: billions of events, Petabytes of data
» Need fast code to execute on computing clusters
= Hierarchical data structures: Trees (event variables, track variables)

Computing uses consumer hardware (no Crays)
= Run same code on laptop and cluster (almost)

Physicists traditionally prefer to use one language for everything
= Past: libraries and analysis code written in C++ (Fortran before)
= Current: write libraries in C++ and analysis code in C++ or Python
= Trend: more Python, less C++

ROOT FRAMEWORK

e Latestrelease 6.16/00

e |Large meta-library
= |0, data structures, histograms, fitting, graphics,
databases, OS interaction, ...

e High-level statistics tools
= RooFit, RooStats, TMVA

https://root.cern.ch/

WHAT ROOT DOES WELL

ROOT IO: TFile & TTree have no equal
= Portable binary hierarchical data format

» Transparent compression
= Allows partial reads & partial recovery from failed writes

s Fastinteractive data exploration with TTree: :Draw

Cling: ROOT’s C++ runtime interpreter

= Fully standard compliant (based on LLVM)
= Run C++ code like a script or compile for fast execution

= Replaced CINT from ROOT 5

PyROOT: Auto-generated Python bindings
= Wraps arbitrary C++ code to Python without extra effort (when it works)

Backward compatibility

ROOTBOOKS IN SWAN

Jupyter on top of CERNBox with Python and ROOT C++ kernels

demo > ROOQOT C++in SWAN
Last Checkpoint: 8 minutes ago (unsaved changes)

FILE EDIT VIEW INSERT CELL KERNEL WIDGETS HELP Trusted | ROOT C++ O

B+ x @B 4+ ¥ M B C W Code Sl m = Ll

In [1]: #include <TH1D.h>
#include <vector>

In [2]: auto h = TH1D("hist", "", 10, 0.0, 10.0);

In [3]: for (auto x: std::vector<double>{{1l., 2., 3.}})
h.Fill(x);

In [4]: h.GetMean()

(double) 2.0000000

SWAN © Copyright CERN 2016-2018. All rights reserved. Cw
Home | Contact | Support | Report a bug \ 7

https://www.mpi-hd.mpg.de/personalhomes/hdembins/2019_Mar_PyGamma19/swan.cern.ch

WHAT ROOT DOES NOT SO WELL

Brittle automatic memory management
= No. 1 usercomplaint,see my LHCb talk at ROOT Users’ Workshop, slide 11

ROOT tried to replace the-E++standara any library

= Not-invented here syndrome and vendor lock-in
= Standard interfaces duplicated in ROOT with added maintenance burden
= Users forced to learn ROOT style instead of idiomatic C++

Maintenace nightmare

= Bugs bugs bugs, and many of them open for years
= Too small developer team for too large code base
» Little support from industry and OSS community

Design issues: leaking abstractions, lack of RAIl, inconsistencies

https://indico.cern.ch/event/697389/contributions/3114285/
https://en.wikipedia.org/wiki/Not_invented_here
https://en.wikipedia.org/wiki/Vendor_lock-in

AVERAGE BUG LIFETIME IN ROOT

1150
1100

-1

I —)

e e — ———— ——— —— — — — E— ————— |

-

S ——— —

e — Y

1050
1000
as0
ano
a0
200

TFile* outfile =
TH1D* histogram

DESIGN ISSUES

Actual ROOT code

new TFile(...); // stack allocation usually does not work
= new TH1D(...); // ROOT wants everything on the heap

// ...fill histogram...

histogram->Write
outfile->Close()
delete outfile;

TFile outfile("o
TH1D histogram(.

(); // how does histogram know where to write to?
; // histogram also silently deleted here?
// histogram also silently deleted here?

Desired ROOT code

utput.root", "recreate"); // stack allocation works

ee)

// ...fill histogram...

outfile << histo
outfile.close();

gram; // ostreaming, just like in std iostreams
// no coupling of life-time of TFile and THI1D

THE FUTURE: ROOT 7

First release in 20 years to break backward-compatibility
» Required to fix historic mistakes in interfaces and memory management
= “We will use standard C++ types, standard interface behavior”

Nice new things
» RHist replaces previous histograms
= RDataFrame replaces TTree
= Better (automatic) parallelization
» Better graphics

Many talks about ROOT 7 at ROOT Users’ Workshop 2018

https://root.cern.ch/root-7
https://root.cern/doc/v616/classROOT_1_1Experimental_1_1RHist.html
https://root.cern/doc/v616/classROOT_1_1RDataFrame.html
https://indico.cern.ch/event/697389/

WHY ROOT 7 WILL NOT WIN THE DAY

» ROOT 7 is a bigimprovement, but...

» Big Data community is moving away from C++ towards Python
= Industry-powered machine learning tools are in Python
= ML tools draw people to Python ecosphere
» Python gives you access to better and faster evolving libraries
= Why would you ever go back?

e Manpower problem remains

= Still large amounts of tech debt which binds manpower
o Can either fix bugs or develop new features

= Loosing race againsts other libraries which attract more manpower
o ROOT core team are good people, but cannot compete with OSS community
o Support unlikely to come from OSS community/industry

PYTHON

» Now the dominant language in scientific computing
= Comfortable syntax for analysis scripts
= Easy to learn and master

= Rich and vibrant ecosphere
o NumPy, matplotlib, scipy, scikit-learn, pandas, Jupyter
o Anaconda, PyTorch, TensorFlow, Keras, ...

= Easy to write and distribute new libraries

» Adopted by industry leaders: Google, Instragram, Facebook, ...

» Adopted by leading (astro)particle physics experiments
» |ceCube Neutrino Observatory, CTA, CERN, ...

Really, everything. Even CMake or pybind11.

relative frequency normalized to 100

100

GOOGLE TRENDS

data + X (worldwide)

machine learning + X (worldwide)

80

60 -

40

20

0

—— Python

—R

— C++

2004

2006

2008

2010

2012
year

2014

2016

2018

2004

2006

2008

2010

2012

2014

2016

2018

t

w
o
o

program CPU time / fastest CPU time

BUT PYTHON IS SLOW...!

How many times slower?) How many times slower?
E T
5 300
-}
S
100 ~ 100 o]
0
50 T 2 50
30 & 30
T ~ &
T (0]
10 T T £ 10 3
S - éé °
1 ﬁ&!é g 1
benchmarks game 01 Mar 2019 u6b4q o benchmarks game 01 Mar 2019 u6b4q

Source: The Benchmark Game

https://benchmarksgame-team.pages.debian.net/benchmarksgame/

... ORISIT?

Use a fast Python library (written in C/C++, Fortran, ...)
= NumPy, CuPy, SciPy, ...

Use a JIT in your Python session: Numba
Use a faster Python interpreter: PyPy

Use Python as a glue language
= Python configures and steers fast C/C++/Fortran code
= Passes memory buffers from one library to the next
= Examples: ROOT, LHCb Core Software, IceCube Framework...

= Generate bindings with ...
o pybind11, cffi, f2py, ctypes, Cython, Boost.Python, SWIG, PyROOT, ...

NUMPY

e SIMD programming: Single Instruction on Multiple Data
e Compute one array at a time instead of one value at the time
e Python loops and functions are slow, NumPy calls them in C

Pro

Contra

Easy to use
Quite fast
Often compact readable code

Creates temporary arrays which could be avoided
Not so readable/fast when instruction has branches
Learning-curve: Thinking in arrays, NumPy API

import numpy as np

X

Qoo W%

ST IN

= np.random.rand(1000)

good

2 * x + 1

np.log(x ** 4)

x > 0.5 # creates a boolean array, can be used to filter x

not so good: compute 2 x if x < 2 and else x + 3
= np.where(x < 2, 2 * x, x + 3)

e Doesn’t work when instructions differ for each element

= MC simulation of multiple particle trajectories
= Mandelbrot fractal (no. of iterations vary in each pixel)

NUMBA: JIT COMPILER FOR PYTHON

1. Translates Python code into AST (types are inferred)
2. Applies optimizations (vectorization, parallelization)
3. Compiles AST with LLVM into machine code

Pro Contra

Easy to use Not all Python types supported

Really fast pythonic code Only works on functions and methods (not classes)
Supports auto-parallelization Learning-curve: understanding Numba errors

Supports GPU computation
Use NumPy as input and output

Numba is pretty smart: inlines nested JITed functions, ...

Justimport njit and decorate your function

from numba import njit
import numpy as np
X = np.random.rand(1000)

def func with branch numpy(x): # 11 us
return np.where(x < 0.5, 2 * x, x + 3)

@njit
def func with branch numba(x): # 0.9 us
result = np.empty like(x)
for i, xi in enumerate(x):
if xi < 0.5:
result[i] = 2 * xi
else:
result[i] = xi + 3
return result

Numba is 12x faster than NumPy on my laptop

PYPY: JIT-ENABLED INTERPRETER

Alternative JIT-enabled Python interpreter written in RPython

Pro

Contra

|deally: Use PyPy and code gets fast
Expressions are JIT-compiled as needed
Can optimize classes

Can do global code optimizations
Numpy, matplotlib work

Not all Python libraries work: e.g. SciPy

A bit cumbersome to install

Lagging behind CPython syntax (stable: 3.5)
NumPy code may run slower

NumPyPy incomplete

Official Download and Install Page
Portable binaries for Linux

mkdir -p S$HOME/pypy

URL = https://bitbucket.org/squeaky/portable-pypy/downloads/pypy3.5-7.0.0-
linux x86 64-portable.tar.bz2

wget -O - SURL | tar xjf - --strip-components=1 -C $HOME/pypy

SHOME /pypy/bin/virtualenv-pypy $HOME/pypy/venv

source $HOME/pypy/venv/bin/activate

Mac OS X binary

mkdir -p $HOME/pypy

URL = https://bitbucket.org/pypy/pypy/downloads/pypy3.5-v7.0.0-0sx64.tar.bz2
wget -0 - SURL | tar xjf - —--strip-components=1 -C $HOME/pypy

pip install --user virtualenv

virtualenv $HOME/pypy/venv -p SHOME/pypy/bin/pypy3

source S$HOME/pypy/venv/bin/activate

https://pypy.org/download.html
https://github.com/squeaky-pl/portable-pypy#portable-pypy-distribution-for-linux
https://bitbucket.org/pypy/pypy/downloads/pypy3.5-v7.0.0-osx64.tar.bz2

e PyPy3.5-7.0: 1.7x faster than NumPy in CPython
= Numba in CPython 7x faster than PyPy3.5-7.0

e Could not compile NumPy on OSX (works on Linux)
= setuptools doesn’t add -stdlib=1ibc++ on Darwin platform &

import random
X = [random.uniform(0, 1) for i in range(1000)]

def func with branch(x): # 6.3 us
result = [0.0] * 1000 # using [0] * 1000 here gives a slowdown of 2!

for i, xi in enumerate(x):
if xi < 0.5:
result[i] = 2 * xi
else:
result[i] = xi + 3
return result

... but you can write plain pythonic code and it is fast

SCIKIT-HEP PROJECT

Online community which develops Python stack for HEP

= Supported by IRIS-HEP, NSF funded software institute
= Leading members from Princeton, Cincinnati U, Washington U...

Join us on Gitter: https://gitter.im/HSF/PyHEP
Scikit-HEP forum: scikit-hep-forum@googlegroups.com
On Github: https://github.com/scikit-hep

Home of uproot, iminuit, boost-histogram, particle, pyhepmg, ...

http://scikit-hep.org/
http://iris-hep.org/
https://gitter.im/HSF/PyHEP
mailto:scikit-hep-forum@googlegroups.com
https://github.com/scikit-hep
https://github.com/scikit-hep/uproot
https://github.com/scikit-hep/iminuit
https://github.com/scikit-hep/boost-histogram
https://github.com/scikit-hep/particle
https://github.com/scikit-hep/pyhepmc

UPROOT

Implementation ROOT I/0 in pure Python and Numpy
Read/write ROOT trees, histograms, TGraphs, T(Lorentz)Vectors
Can read data fields of any other ROOT type

Up to 3x faster than C++ ROOT

Does not depend on C++ ROOT (justone pip install away)
Extensible, see uproot-methods repository

Powered by awkward-array
= Hierarchical array implemented on top of standard Numpy arrays
s See Jim Pivarski’s talk for interesting details

https://github.com/scikit-hep/uproot
https://github.com/scikit-hep/uproot-methods
https://github.com/scikit-hep/awkward-array
https://indico.cern.ch/event/697389/contributions/3102772/attachments/1706294/2749432/pivarski-vectorized-nested.pdf

uproot rate / ROOT rate

reading "Muon_pt" from uncompressed files

1 10 100

Basket size (kB)

1000

import numpy as np
import uproot

f = uproot.open("~/Data/sct/mc/00058786 00000001 5.sct.root")
print(f.keys())
[b'sct;6', b'sct;5']

f['sct'].show()

evt run (no streamer) asdtype('>i4")
7o
vtx x (no streamer) asjagged(asdtype('>f4"'))

f['sct/evt _evnum'].array()
array([5881230, 5881230, ..., 5878628, 5878628], dtype=int32)

pz = f['sct/trk pz']l.array()
<JaggedArray [[4186.4 5212.5 3073.3] [] [6479.1 3533.5] ...]>

from matplotlib import pyplot as plt
plt.hist(np.logl0(pz.flatten())) # plot loglO(pz) distribution

for pxi in f['sct/trk px'].array(): print(np.mean(pxi))
150.75218 nan -79.71784 -120.3935 nan -146.99773 12.007137 ...

IMINUIT

The Python wrapper of C++ MINUIT2 library

= Other wrappers (pyminuit, pyminuit2) discontinued

» Bindings generated with Cython (will switch to pybind11)
= Python 2.7 to 3.7 on Linux, Mac, Windows

= New: PyPy support (PyPy3.5-7.0)

Does not depend on C++ ROOT
= Simply install with pip or conda

Many good OSS minimizers: scipy, libnlopt, ...
MINUIT’s unique feature is error computation with Hesse & MINOS

https://github.com/scikit-hep/iminuit

from iminuit import Minuit

def f(x, vy, 2):
return (x - 2) ** 2 + (y - 3) ** 2 + (z - 4) ** 2

m = Minuit(f) # Minuit automagically detects parameter names!

m.migrad() # run optimiser
print(m.values) # {'x': 2,'y's 3,"'z"': 4}

m.hesse() # run Hesse error estimator
print(m.errors) # {'x': 1,'yv': 1,'z': 1}

e Minuit can do much more
= Parameters with limits
= Fixed parameters
= Pretty Jupyter output
= Builtin plotting of error contours and function minimum

BOOST-HISTOGRAM

Python wrapper (alpha stage) for Boost::Histogram in C++

Boost::Histogram will be first released with Boost-1.70 in April
» Generalized multi-dimensional histograms and profiles in idiomatic C++14

= Use buitin axis types or add your own
o regular, variable, circular, category; all growing or non-growing
o Support for complex binning schemes, like hexagonal binning

Easy and safe to use in default configuration

Very customizable for power users
o Get the highest speed for given task
o Write new specialized axis and storage types that we didn’t think of

TMP under the hood makes execution fast and interface easy to use

https://github.com/scikit-hep/boost-histogram
https://github.com/boostorg/histogram

from boost.histogram import histogram
from boost.histogram.axis import regular, category

hist = histogram(category(("red", "blue")),
regular(4, 0.0, 1.0))

input doesn't have to be numerical
hist(["red", "red", "blue"],
[0.1 , 0.4 , 0.9 1)

counts = hist.view
returns numpy array view into histogram counts:

(1, 1, 0, 0],
[0, 0, 0, 1]]

SUMMARY AND OUTLOOK

HEP software is still dominantly C++, but bright future for Python
= Python can be very fast with Numba
= Python can integrate with C/C++ libraries using pybind11
= If you can write fast code in Python, why would you use C++?

OSS initiatives in Python and C++ offer alternatives to ROOT
» Scikit-HEP Project: uproot, iminuit, ...
= Boost::Histogram with Python frontend
s Specialized HEP-style plots in development, to be included in matplotlib

https://github.com/scikit-hep/
https://github.com/boostorg/histogram

BACKUP: PYBIND11 VS. CYTHON

e Cython: transpiler for custom Python/C mixed dialect
= Learning curve: need to learn this dialect
» Designed for C; C++ only partially supported
= Clumsy syntax, workarounds needed for missing features and bugs
= Cython adds problems instead of solving them

e pybindll

= Based on the brilliant Boost::Python library

= No transpiler, just a header-only C++11 library

Uses TMP to automate boilerplate code

= Automated handling of refcounts

= Full power of C++, no workarounds, explicit ownership of memory
Excellent docs

https://cython.org/
https://github.com/pybind/pybind11
https://boostorg.github.io/python/doc/html/index.html

#include <pybindll/pybindll.h>
#include <pybindll/numpy.h>
namespace py = pybindll;

py::array t<double> func with branch(py::array t<double> x) {
auto result = py::array t<double>(x.shape(0));
auto rd = result.mutable data();
auto xd = x.data();
for (ssize t 1 = 0, n = x.shape(0); 1 < n; ++1i) {
if (xd[i] < 0.5) {

rd[i] = 2 * xd[i];
} else {
rd[i] = xd[i] + 3;
}
}
return result;

PYBIND11l MODULE (example, m) ({

m.def ("func with branch", &func with branch); // 1.7 us (compiled with -03)
}

6.5x faster than NumPy version, but 1.9x slower than Numba

